Random
public enum Random
Undocumented
-
Undocumented
Declaration
Swift
@_specialize(exported: false, kind: full, where Element == Float, Device == CPU) @_specialize(exported: false, kind: full, where Element == Double, Device == CPU) @_specialize(exported: false, kind: full, where Element == Int32, Device == CPU) public static func fill<Element, Device>(_ vector: ShapedBuffer<Element, Device>, a: Element, b: Element) where Element : RandomizableType, Device : DeviceType
-
Undocumented
Declaration
Swift
@_specialize(exported: false, kind: full, where Element == Float, Device == CPU) @_specialize(exported: false, kind: full, where Element == Double, Device == CPU) @_specialize(exported: false, kind: full, where Element == Int32, Device == CPU) public static func fillNormal<Element, Device>(_ vector: ShapedBuffer<Element, Device>, mean: Element = 0, stdev: Element = 1) where Element : RandomizableType, Device : DeviceType
-
Samples a random minibatch of tensors from the given data set with shape [sample count, sample_dim1, …, sample_dim_n]
Declaration
Swift
public static func minibatch<Element, Device>(from dataset: Tensor<Element, Device>, count: Int) -> Tensor<Element, Device> where Element : NumericType, Device : DeviceType
Parameters
dataset
Dataset to sample a batch from
count
Number of elements to include in the batch
-
Samples a random minibatch of tensors from the given data set with shape [sample count, sample_dim1, …, sample_dim_n] and their corresponding expected output vectors.
Declaration
Swift
public static func minibatch<E1, E2, D1, D2>(from dataset: Tensor<E1, D1>, labels: Tensor<E2, D2>, count: Int) -> (Tensor<E1, D1>, Tensor<E2, D2>) where E1 : NumericType, E2 : NumericType, D1 : DeviceType, D2 : DeviceType
Parameters
dataset
Dataset to sample a batch from
labels
Corresponding expected output vectors
count
Number of elements to include in the batch
-
Undocumented
Declaration
Swift
@_specialize(exported: false, kind: full, where Element == Float, Device == CPU) @_specialize(exported: false, kind: full, where Element == Int32, Device == CPU) @_specialize(exported: false, kind: full, where Element == Double, Device == CPU) public static func bernoulli<Element, Device>(_ values: ShapedBuffer<Element, Device>, p: Float) where Element : NumericType, Device : DeviceType