GRU
public struct GRU<Element, Device> : RNN, Codable where Element : RandomizableType, Device : DeviceType
Undocumented
-
Declaration
Swift
public typealias Inputs = Tensor<Element, Device> -
Declaration
Swift
public var parameterPaths: [WritableKeyPath<`Self`, Tensor<Element, Device>>] { get } -
Undocumented
Declaration
Swift
public let direction: RNNDirection -
Undocumented
Declaration
Swift
public var Wz: Tensor<Element, Device> -
Undocumented
Declaration
Swift
public var Wr: Tensor<Element, Device> -
Undocumented
Declaration
Swift
public var Wh: Tensor<Element, Device> -
Undocumented
Declaration
Swift
public var Uz: Tensor<Element, Device> -
Undocumented
Declaration
Swift
public var Ur: Tensor<Element, Device> -
Undocumented
Declaration
Swift
public var Uh: Tensor<Element, Device> -
Undocumented
Declaration
Swift
public var bz: Tensor<Element, Device> -
Undocumented
Declaration
Swift
public var br: Tensor<Element, Device> -
Undocumented
Declaration
Swift
public var bh: Tensor<Element, Device> -
Size of inputs of the layer
Declaration
Swift
public var inputSize: Int { get } -
Size of outputs of the layer
Declaration
Swift
public var hiddenSize: Int { get } -
Declaration
Swift
public var parameters: [Tensor<Element, Device>] { get } -
Creates a Gated Recurrent Unit layer.
The RNN expects inputs to have a shape of [sequence length, batch size, input size].
Declaration
Swift
public init(inputSize: Int, hiddenSize: Int, direction: RNNDirection = .forward)Parameters
inputSizeNumber of elements at each timestep of the input
hiddenSizeNumber of elements at each timestep in the output
directionDirection, in which the RNN consumes the input sequence.
-
Declaration
Swift
public func numberOfSteps(for inputs: Tensor<Element, Device>) -> Int
View on GitHub
GRU Structure Reference